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INS-Aided GNSS Pseudo-Range Error
Prediction Using Machine Learning

for Urban Vehicle Navigation
Tisheng Zhang , Long Zhou , Xin Feng , Jinwei Shi , Quan Zhang , and Xiaoji Niu

Abstract—Global navigation satellite system (GNSS) is
being extensively applied in different navigation applica-
tions. However, GNSS direct signals are easily affected by
multipath and non-line-of-sight (NLOS) signals, resulting in
severe deterioration of positioning. GNSS receiver output
information, such as carrier-to-noise ratio (C/N0) and satellite
elevation, cannot accurately reflect the pseudo-range quality,
leading to a significant increase in positioning errors. This
article proposes an inertial navigation system (INS)-aided
GNSS pseudo-range error prediction approach based on
machine learning for urban vehicle navigation. As an impor-
tant feature, the pseudo-range residual estimated by INS is
employed for model training, together with the C/N0, satellite
elevation, and pseudo-range rate consistency. The predicted
model of the pseudo-range errors is obtained by an ensemble
bagging decision tree learning method. Urban vehicle tests
show that compared to GNSS single-point positioning (SPP)
with C/N0-based weighting, the horizontal accuracy in the form of CEP95 of SPP with model-based weighting improves
52.81%, and the GNSS/INS horizontal positioning error in the form of CEP95 is reduced from 21.23 to 5.02 m in deep
urban environments.

Index Terms— Bagging decision tree, global navigation satellite system (GNSS) multipath, GNSS pseudo-range,
inertial navigation system (INS), urban positioning.

I. INTRODUCTION

GLOBAL navigation satellite system (GNSS)-based sen-
sors are widely used as localization sources. However,

GNSS performance is easily affected by multipath and
nonline-of-sight (NLOS) signals reception in urban environ-
ments. While in the case of multipath, the direct and the
reflected signals are received simultaneously, in the case of
NLOS, only reflected signals can be received [1]. These
factors cause serious deterioration in the quality of GNSS
pseudo-range observations, increasing positioning error and
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affecting the GNSS application in urban canyons. To mitigate
the effects of multipath and NLOS on GNSS positioning,
scholars have done lots of research through antenna design,
signal processing, observation processing, external information
aiding, and machine learning.

High-quality survey antennas can improve GNSS signal
reception. The choke coil antennas [2] have been widely
adopted for multipath suppression [3]. Since the right-hand
circular polarized (RHCP) signal would be transferred to the
left-hand circular polarized (LHCP) signal when reflected,
Jiang and Groves [4] applied dual-polarized antenna detecting
reflected signals. However, survey antennas are expensive and
bulky, unsuitable for consumer applications. Suzuki et al. [5]
proposed a method to mitigate line-of-sight (LOS) and NLOS
multipath errors by rotating the GNSS antenna arm horizon-
tally at a certain angular velocity. The positioning error was
decreased from 18.96 to 2.83 m by the rotating antenna,
which requires an additional mechanical device. At the signal
processing level, the narrowband correlators were proposed by
Van Dierendonck et al. [6] to mitigate multipath, which was
widely studied and applied [7]. In addition, specially designed
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delay-locked loops such as CADLL [8] and MEDLL [9] could
also effectively mitigate multipath. However, these baseband
processing methods can only suppress long-delay multipath,
have limited effect on short-delay multipath, and cannot solve
the NLOS problem. At the observation level, scholars utilized
information such as the carrier-to-noise density ratio (C/N0)
and elevation to estimate the quality of GNSS observation.
While the high C/N0 signal can be classified as LOS, the low
C/N0 is classified as NLOS or multipath [10], [11]. The higher
the elevation, the more likely the signal will be LOS. As the
elevation decreases, the satellite is more likely to be blocked
by buildings or other obstacles with the corresponding signal
being NLOS [12], [13]. However, these observation features
cannot accurately distinguish between multipath and NLOS
signals. They cannot quantitatively represent the pseudo-range
observation error, which has limited improvement in the posi-
tioning accuracy.

To effectively mitigate the impact of NLOS on GNSS
positioning, scholars have investigated external information
(cameras, lidar, 3-D models, etc.) assisting GNSS signal clas-
sification. Visible light cameras [14], fish-eye cameras [15],
[16], and omnidirectional infrared cameras [17] pointed at
the zenith can detect satellites blocked or not by buildings.
However, the camera is greatly affected by the weather and
lighting conditions. Real-time 3-D point cloud generated by
LiDAR is also used to identify NLOS signals, but it has
a limited measurement range [18], [19]. Three-dimensional
city model is helpful for NLOS identification and positioning
accuracy [20]. Shadow matching was proposed by Groves [21]
and Lei et al. [22] to improve the accuracy of cross-street
positioning in dense urban through 3-D building models.
Hsu et al. [23], [24] and Obst et al. [25] utilized the 3-D
map to perform ray tracing to simulate the signal-transmitting
path among buildings and trees, determine the visibility of
the signals, and even correct the NLOS errors. Kbayer and
Sahmoudi [26] and Peyraud et al. [27] exploited 3-D city
models and map information to assist in detecting and cor-
recting NLOS. Three dimensional model assisting methods
depend highly on model accuracy and have limited usefulness
for multipath signals.

With the development of satellite navigation positioning
systems, modernized satellite navigation systems modulate
signals by binary offset carrier (BOC) or a variant of it,
such as the B1C signal of Beidou using quadrature multi-
plexed BOC (QMBOC) modulation [28], the E5 signal of
Galileo using alternative BOC (AltBOC) modulation, and
so on [29]. The new signals reduce the multipath effect
from the perspective of signal design and bring better
performance. In the literature [30], the PCF algorithm is
proposed that realizes unambiguous tracking by constructing
pseudo-correlation functions. The PCF algorithm can com-
pletely eliminate the multiple peaks of BOC signals, and
at the same time use the appropriate width factor to obtain
narrower correlation peaks and better multipath resistance
performance [31]. Wang et al. [32] using the noncoherent
early-late processing track loop constructed the multipath
error model and analyzed the performance of multipath
suppression of time division AltBOC (TD-AltBOC) and

AltBOC signals for different front-end bandwidth of the
receiver. The experimental results show that AltBOC (15, 10)
has the best multipath suppression performance. Although the
new signals can have some anti-multipath effect in design, they
cannot completely solve the multipath. It is still necessary to
apply other multipath suppression algorithms.

Traditional methods can only mitigate one of the effects
of multipath and NLOS. Conventional integration systems
can only use a limited number of partial features to model
multipath signals, and there are limitations to the scenarios
in which they can be used. Due to the stochastic nature of
multipath signals, it is difficult to unite multiple observational
information to obtain an effective prediction model, so more
and more studies identified and mitigated GNSS multipath and
NLOS by machine learning. Machine learning can fit relation-
ships between variables that cannot be shown to be modeled,
which makes it well suited to solve the problem of multipath.
Phan et al. [33] used elevation and azimuth as key features of
a support vector machine (SVM) to mitigate multipath effects,
reducing the standard deviation (STD) of multipath errors by
an average of 79%. Yozevitch et al. [34] classified LOS and
NLOS based on a decision tree approach with C/N0, elevation,
and pseudo-range variables as inputs, and the recognition
accuracy is 77.60% for LOS signals and 87.20% for NLOS
signals. Hsu [35] constructed a signal classifier based on the
SVM algorithm using received signal strength, the change
rate of RSS, pseudo-range residue, and difference between
delta pseudo-range and pseudo-range rate as inputs, and the
recognition accuracy is 75.40%. Sun et al. [36] utilized an
artificial neuro fuzzy inference system (ANFIS) to classify
LOS, multipath, and NLOS signals with nine variables such
as HDOP, VDOP, etc., and the recognition rate was higher
than 84% in static tests. Existing machine learning algorithms
mainly focus on identifying and classifying multipath and
NLOS signals [37], [38]. However, the multipath and NLOS
classification cannot quantitatively reflect the pseudo-range
observation error directly related to the positioning accuracy.

When there are few available LOS satellites, multipath,
and NLOS signals need to participate in GNSS position-
ing, and it is very valuable to estimate pseudo-range errors
to ensure positioning accuracy in signal-challenged environ-
ments. Sun et al. [39] proposed a gradient boosting decision
tree (GBDT) based method to predict GNSS pseudo-range
errors by taking signal strength, satellite elevation, and
pseudo-range residual as input features. The 3-D positioning
accuracy of the pseudo-range error correction-based position-
ing measured in terms of the root mean square (rms) error
has an improvement of more than 70% over the conventional
methods in urban environments. Zhang et al. [40] predicted the
satellite visibility and pseudo-range errors based on deep learn-
ing networks with long short-term memory. They employed
five input features, including elevation, azimuth angle, pseudo-
range residual, C/N0, and root-sum-squares of pseudo-range
residuals. The networks can predict the pseudo-range errors
with an average difference of 4.90 m to the labeled errors.
However, the pseudo-range residual is obtained based on
GNSS positioning, constrained by GNSS positioning accu-
racy, and would not be credible in deep urban environments.
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Fig. 1. Framework of the proposed pseudo-range error prediction method.

In addition, these methods are only suitable for static sce-
narios, and their performance would degrade under dynamic
conditions. Sun et al. [41] constructed the random forest-
based pseudo-range error prediction and correction models
considering the C/N0, satellite elevation, and local posi-
tional information. The new research improves the kinematic
positioning accuracy in urban environments. However, the
location information used in this method is still obtained from
GNSS positioning, which can be influenced in deep urban
environments. In GNSS and inertial navigation system (INS)-
integrated navigation systems, the INS can estimate the GNSS
pseudo-range residual more accurately in GNSS challenged
environments. Therefore, GNSS pseudo-range residual esti-
mated by INS can be an excellent input feature of machine
learning. This article predicts GNSS pseudo-range errors by
a bagging decision tree learning method, with pseudo-range
residual estimated by INS, C/N0, satellite elevation, and
pseudo-range rate consistency as feature inputs. The predicted
model is employed in GNSS single-point positioning (SPP)
and GNSS/INS-integrated navigation to verify pseudo-range
prediction and positioning performance. To ensure the effec-
tiveness and generalization of the model, we collected nine sets
of vehicle-based data from different environments for model
training and testing. The main contributions are summarized as
follows.

1) To improve the positioning accuracy of GNSS/INS
coupled system in urban vehicle environments, the
GNSS pseudo-range residual calculated by INS is con-
sidered an important input feature to train the GNSS
pseudo-range error prediction model.

2) The INS-aided prediction model is trained by an ensem-
ble bagging tree learning method, with multiple sets of
urban vehicle testing data, including elevated roads, tree-
lined roads, building clusters, and tunnels, to ensure its
effectiveness and generalization ability.

3) Compared to SPP with C/N0-based weighting, the hor-
izontal accuracy in the form of circular error probable
(CEP) 95 of SPP with model-based weighting improves
52.81%, and the horizontal error (CEP95) GNSS/INS-
integrated navigation is reduced from 21.23 to 5.02 m
in urban environments.

The remainder of the article is organized as follows.
Section II presents the overall framework for the pseudo-range
error prediction method. Section III describes the characteris-
tics and extractions of labels and features. Section IV discusses
the machine learning algorithm of pseudo-range error pre-
diction. Testing and analysis are presented in Section V.
Section VI gives conclusions.

II. ALGORITHM FRAMEWORK

The proposed pseudo-range error prediction method is pre-
sented within the framework depicted in Fig. 1, which consists
of an offline training phase (dashed box on the left) and
an online model testing phase. During the offline training
phase, multiple sets of vehicle data of the GNSS/INS-coupled
system were collected in typical urban environments, including
GNSS C/N0, satellite elevation, pseudo-range, Doppler, raw
data from microelectromechanical system (MEMS) inertial
measurement units (IMUs), and GNSS position, INS position,
and integrated position. The collected data are preprocessed
to extract input features, such as C/N0, elevation, pseudo-
range rate consistency, and estimated pseudo-range residual.
Meanwhile, a high-performance GNSS/INS-coupled system,
as a reference system, is employed to obtain a pseudo-range
error labeled dataset. The bagging tree trains the dataset to get
the relationship model between the input features and pseudo-
range error.

The online test phase, shown on the right side of Fig. 1,
includes feature extraction, labeling process, and bagging tree
algorithms. In this phase, a dataset not employed for training
is for online model testing. First, the features, including C/N0,
elevation, estimated pseudo-range residual, and pseudo-range
rate consistency, are extracted for each epoch and input into
the learning model, and obtain corresponding classification
results of pseudo-range error. Then, the results are transformed
into weight values of the least squares for GNSS positioning.
Finally, the GNSS and INS are fused to obtain the integrated
position.

The GNSS position can show the effect of the weight
setting on pseudo-ranges, which reflects the pseudo-range error
prediction accuracy of the learning model. The integrated
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results demonstrate that the proposed prediction method can
improve GNSS/INS-integrated navigation performance.

III. LABELING PROCESS AND FEATURE EXTRACTION

A. Labeling Process
Labeling GNSS pseudo-range errors is an important step

of the model training. The reference of pseudo-range errors
can be calculated using the vehicle position, base station, and
satellite ephemeris. For satellite i , its pseudo-range observation
equation can be expressed as

ρ(i)
= r (i)

+ δtu − δt (i)
+ I (i)

+ T (i)
+ ε(i). (1)

In which, r (i) is the geometric range between the satellite i
and the vehicle, δt (i) is the satellite clock offset, δtu is the
receiver clock offset, I (i) is the ionospheric delay, T (i) is the
tropospheric delay, and ε(i) is the pseudo-range error caused
by environment multipath, thermal noise, etc.

Since the vehicle is close to the base station, it can be
assumed that they are affected by the same atmospheric delays.
We can eliminate the effects of the ionospheric, tropospheric,
and satellite clock offset by the station difference. The result
of the difference for satellite i is

δρ(i)
= r (i)

− r (i)
base + δtu − δtbase + ε(i)

− ε
(i)
base. (2)

In which, r (i)
base is the range between the satellite i and the

base station, and δtbase is the receiver clock offset of the base
station. The base station is located in open environments and is
minimally affected by multipath, so its pseudo-range error ε

(i)
base

can be negligible. The satellite-vehicle range r (i) is obtained
by the position of the reference system and the satellite

r (i)
= ∥x(i)

− x∥

=

√(
x (i) − x

)2
+

(
y(i) − y

)2
+

(
z(i) − z

)2
. (3)

x(i)
= (x (i), y(i), z(i)) is the satellite position calculated using

the satellite ephemeris, while x = (x, y, z) represents the
position obtained by the high-precise reference system. The
position of the reference system is obtained by post-processing
integrated navigation of GNSS real-time kinematic positioning
(RTK) and high-precision INS. And r (i)

base can be calculated in
the same way.

In GNSS-challenged environments, it is difficult to estimate
the receiver clock offset during GNSS positioning accurately.
Therefore, it is necessary to eliminate the influence of the
receiver clock offset through satellite difference. Selecting
satellite j as the reference, the result of station difference for
satellite j is expressed as

δρ( j)
= r ( j)

− r ( j)
base + δtu − δtbase + ε( j)

− ε
( j)
base. (4)

The reference satellite is chosen by a cluster-based
algorithm proposed by Weng et al. [42]; its pseudo-range error
ε( j) can be negligible compared to the satellite’s pseudo-range
error affected by multipath or NLOS. Therefore, by subtract-
ing (2) and (3), the receiver clock offset can be eliminated as
shown in (5). As discussed above the variables ε( j), ε

(i)
base and

ε
( j)
base can be neglected while r (i), r ( j), r (i)

base and r ( j)
base can be

TABLE I
LABEL CATEGORIZATION STRATEGY

calculated by (3). So the pseudo-range error ε(i) can be get
by (6)

δρ(i)
− δρ( j)

= r (i)
− r (i)

base + ε(i)

− ε
(i)
base − r ( j)

− r ( j)
base + ε( j)

− ε
( j)
base (5)

ε(i)
= δρ(i)

− δρ( j)
− r (i)

+ r (i)
base + r ( j)

− r ( j)
base. (6)

According to the typical ranges of the pseudo-range errors
in different scenarios, we classify the pseudo-range errors into
four categories as shown in Table I. The classifications are the
labels for machine learning.

Based on experience, the pseudo-range errors of direct sig-
nals are generally within 4 m. Therefore, errors between 0 and
4 m are classified into the first category, and the labels are
uniformly set as 1. When the satellite signals are affected by
short multipath, their pseudo-range errors are almost between
4 and 10 m, and the errors within this range are classified as
the second category, with a uniform label of 2. When satellite
signals suffer from long multipath or NLOS, the pseudo-range
errors are generally within 10–40 m, which are classified as
the third category and labeled as 3. The pseudo-range errors
of some NLOS signals or close to lose lock signals may
exceed 40 m, which are classified as the fourth category and
labeled as 4.

B. Feature Extraction
The GNSS/INS-integrated navigation system can output not

only raw data, including GNSS C/N0, elevation, pseudo-range,
and Doppler for each satellite, and IMU raw data, but also
GNSS position, INS position, and integrated position. By pre-
processing these data, four types of information related to
GNSS pseudo-range errors can be extracted: C/N0, elevation,
pseudo-range rate consistency, and estimated pseudo-range
residual. This article utilizes these information as input fea-
tures for the training set. The characteristics and extraction
methods of the four features are described as follows.

1) C/N0: C/N0 is the ratio of carrier power and the noise
power of the received signal in unit Hz bandwidth,
expressed in dB·Hz. It represents signal quality and the
extent of signal attenuation. A lower C/N0 is generally
associated with a signal subject to multipath or NLOS.
The C/N0 can somewhat reflect the quality of the
pseudo-range measurement. It can be directly obtained
from the GNSS receiver and is commonly adopted for
weighting in GNSS positioning in GNSS challenged
environments.

2) Satellite Elevation, θ : The satellite elevation θ refers
to the angle between the satellite and the horizon at the
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receiver’s location. Signals of low-elevation satellites are
more likely to be affected by high-rise buildings and
cause multipath and NLOS compared with those from
satellites at high elevations. The elevation can be directly
obtained from the receiver and is often employed in open
sky environments for GNSS positioning weighting [43].

3) Pseudo-range Rate Consistency, ζ : Pseudo-range rate
consistency ζ refers to the consistency between delta
pseudo-range and pseudo-range rate. Delta pseudo-range
is the difference between the pseudo-range of the last
epoch and that of the current epoch. Pseudo-range rate
is the change of the pseudo-range calculated by the
Doppler. In urban environments, compared with pseudo-
range, Doppler error is smaller and can be employed
to detect pseudo-range gross errors. Pseudo-range rate
consistency is obtained by preprocessing data through
the following formula:

ζ = (ρi − ρi−1) − (− fd · λ · T ). (7)

ρi is current epoch pseudo-range, λ denotes the wave-
length of the signal, fd is the Doppler, and T is the
inter-epoch interval.

4) Estimated Pseudo-range Residual, η: Estimated
pseudo-range residual η is obtained by the pseudo-range
observations and the predicted pseudo-range calculated
based on satellite ephemeris and vehicle position.
The accuracy of the estimated pseudo-range residual
is decided by the predicted pseudo-range, which
is constrained by the vehicle position error. GNSS
positioning result is utilized to calculate the predicted
pseudo-range in existing literature [39]. In this article,
the predicted pseudo-range is calculated by the
INS predicted position for the GNSS/INS-integrated
navigation system.
From (1), we know that if r (i), δt (i), I (i) and T (i) are all
known, the pseudo-range error ε(i) can be calculated. But
we can’t calculate the precise position, we can only get
the estimated pseudo-range residual η(i) with the effect
of positioning by the following equation:

η(i)
= ρ(i)

− r (i)
− δtu + δt (i)

− I (i)
− T (i). (8)

The satellite-vehicle range r is obtained by (3), here
x = (x, y, z) represents the vehicle position obtained by
GNSS SPP or GNSS/INS-integrated navigation. As we
do not have a base station, the satellite clock offset can
only obtained by satellite ephemeris

δt (i)
= ∆t (i)

+ ∆tr − TGD. (9)

In which, ∆t (i) is the satellite clock offset given by the
first data block of the satellite navigation message. ∆tr is
the relativistic correction. TGD is group delay correction.
the receiver clock offset is eliminated through satellite
difference. Selecting satellite j as the reference. After
removing the satellite-vehicle range and satellite clock
offset from the observations, the residual information of
the two pseudo-ranges can be expressed as{

ρ(i)
c = δtu + I (i)

+ T (i)
+ η(i)

ρ( j)
c = δtu + I ( j)

+ T ( j)
+ η( j).

(10)

Fig. 2. Pseudo-range residual before and after removing the iono-
sphere and troposphere effects.

As mentioned in the labeling process section, the refer-
ence satellite’s pseudo-range residual can be negligible.
Therefore, by subtracting the above two equations, the
receiver clock offset can be eliminated, and the equation
can be written as follows:

η(i)
= δρi j − δ I T

δ I T = I (i)
− I ( j)

+ T (i)
− T ( j). (11)

δρi j includes not only pseudo-range residual caused by
environments but also the impact of ionosphere and
troposphere on both the reference satellite and satellite i .
η(i) can be obtained once removing the effects of the
ionospheric and tropospheric. Under vehicle dynamic
conditions, compared to the GNSS pseudo-range resid-
ual η(i), the ionospheric and tropospheric delay can be
regarded as slowly varying terms. Therefore, the δ I T
can be estimated by robust locally weighted scatterplot
smoothing (RLOWESS) filtering to δρ(i j). η(i) can be
obtained by subtracting the estimated δ I T from δρ(i j).
Fig. 2 presents the δρ(i j) and the η(i) in urban vehicle
environments. The fluctuation consistency of the two
curves shows that δ I T can be estimated and removed
through RLOWESS filtering.

a) Estimated Pseudo-Range Residual Based on GNSS,
ηG N SS: By utilizing the GNSS positioning result
and satellite position, the pseudo-range residual
caused by environments can be estimated. The
satellite-vehicle range is obtained by the GNSS
position of the target system and the satellite,
expressed as

r (n)
GNSS = ∥x(n)

− xGNSS∥. (12)

Here, x(n)
= (x (n), y(n), z(n)) is the satellite

position calculated by satellite ephemeris, while
xGNSS = (xGNSS, yGNSS, zGNSS) is the vehicle posi-
tion obtained through GNSS positioning. Other
processing is as explained above. Since the effect
of the satellite clock, the receiver clock, δ I T ,
and the observation noise of the reference satellite
on the pseudo-range residual estimation can be
ignored, the error of GNSS positioning is the main
factor. In urban environments, the available satel-
lites are limited, and most of them are affected by

Authorized licensed use limited to: Wuhan University. Downloaded on March 15,2024 at 07:36:15 UTC from IEEE Xplore.  Restrictions apply. 



9140 IEEE SENSORS JOURNAL, VOL. 24, NO. 6, 15 MARCH 2024

Fig. 3. Flowchart of the ensemble bagging classification tree algorithm.

multipath and NLOS, leading to severe degradation
of GNSS positioning accuracy. Therefore, ηGNSS
cannot accurately reflect the pseudo-range error in
GNSS challenged scenarios.

b) Estimated Pseudo-Range Residual Based on INS,
ηI N S: In GNSS/INS-integrated navigation sys-
tems, INS-predicted position can be utilized
to calculate the satellite-to-vehicle range. INS-
predicted position refers to the position calculated
by INS mechanization based on the previous
epoch GNSS/INS-integrated result. Therefore, the
satellite-vehicle range r (n)

INS based on INS-predicted
positions can be expressed as

r (n)
INS = ∥x(n)

− xINS∥. (13)

xINS = (xINS, yINS, zINS) is the predicted posi-
tion by INS. Another calculation process for the
pseudo-range residual ηINS is the same as ηGNSS.
Since the INS predicted position is not affected
by the GNSS of the current epoch, the esti-
mated pseudo-range residual based on INS can
be more accurate than ηGNSS in GNSS-challenged
environments.

To verify the effect of INS aiding, this article will carry
out training using ηGNSS and ηINS, respectively, and generate
two models for performance comparison. The training set that
uses ηGNSS is referred to as the GNSS-based training set, while
the corresponding learning model is termed the GNSS-based
bagging tree model (GNSS-BT). Similarly, the training set
based on ηINS is called the INS-based training set, and the
corresponding model is named the INS-based bagging tree
model (INS-BT).

IV. BAGGING TREE CLASSIFIER

The decision tree is a widely employed classification
algorithm in machine learning that effectively segments data
to enhance the clarity of complex datasets [43]. However,
a single decision tree is prone to overfitting, resulting in
low accuracy, and ensemble methods are generally utilized
to combine multiple decision trees to improve prediction per-
formance [44], [45]. The bagging algorithm is one ensemble
method that trains decision trees using a sampling approach
with replacement. By introducing sample perturbations and

increasing the randomness, it effectively reduces variance [46].
Therefore, the bagging tree classification model performs well
on training sets that are easily disturbed by samples, making
it suitable for predicting and classifying GNSS pseudo-range
errors in urban environments.

The bagging classification tree is based on the principle
illustrated in Fig. 3. We can obtain a training set D =

{(x1, y1), (x2, y2), . . . , (xi , yi )} by combining the features with
their corresponding labels, where xi = (C/N0i , θi , ζi , ηi ), yi is
the classified label of pseudo-range error corresponding to xi ,
and i = 1, 2, 3, . . . , M , is the sample index, M is the total
number of input samples. The input is the training set D, and
multiple sample sets are obtained using the bootstrap sampling
method. For each sample set, a decision tree is trained as the
base learner. Subsequently, these base learners are combined
by a simple voting method to obtain the final classification
model [47], [48], [49]. The specific implementation process is
as Fig. 3.

1) Bootstrap Sampling: Given a dataset D = {(x1, y1),

(x2, y2), . . . , (xM , yM)} containing M samples, the boot-
strap sampling method randomly selects one sample
to be included in a sample set. The selected sample
is then returned to the initial dataset, allowing it to
be chosen again in subsequent sampling rounds. After
T rounds of random sampling, we obtain T sample
sets, each containing M samples, denoted as Dt , t =

1, 2, 3, . . . , T .
2) Single Decision Tree Classification Model: The process

of generating a classification decision tree for each
subsampled training set Dt is as follows.

a) Computing the Gini index for the input features
{C/N0, θ, ζ, η} on the dataset Dt . For each feature
A, we calculate the Gini index for A = a for each
possible value a. The Gini index for a given sample
set Dt can be defined as follows:

Gini(Dt ) = 1 −

K∑
k=1

(
|Ck |

|Dt |

)
. (14)

Ck represents the subset of samples that belong to
the kth class, and k is the number of classes. For
pseudo-range error training, k is 4. According to
whether the feature A can take the value a, Dt is
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divided into two parts, D1 and D2

D1 = {(x, y) ∈ Dt |A(x) = a}

D2 = Dt − D1. (15)

Under the condition of feature A, the Gini index
of set Dt is defined as

Gini(Dt , A) =
|D1|

|Dt |
Gini(D1)

+
|D2|

|Dt |
Gini(D2). (16)

b) Among all possible features A and their corre-
sponding splitting point a, the feature with the
smallest Gini index and its corresponding splitting
point are selected as the optimal feature and opti-
mal split point. Using the optimal feature and split
point, two child nodes are created from the parent
node and the training set is assigned to the child
nodes based on their features.

c) Recursively applying steps a) and b) to the two
child nodes until either the number of samples in
the node is less than the predetermined threshold
or the Gini index of the samples is less than the
threshold.

d) Once the stopping criteria are met, a decision tree
model for the sub-training set Dt is generated and
denoted as ht (x).

3) Bagging Tree Classifier: After obtaining all base learn-
ers, they are combined by a voting method, represented
as

H(x) = arg max
y∈K

T∑
t=1

I (ht (x) = y). (17)

The classification model H(x) is obtained through the
above steps. Its inputs are the four features C/N0,
satellite elevation θ , pseudo-range rate consistency ζ ,
and estimated pseudo-range residual η. The outputs are
pseudo-range error prediction results and scores for each
category. A higher score indicates a higher likelihood
of predicting that particular category. When a new set
of data x = {C/N0, θ, ζ, η} is available, the model can
generate the corresponding predicted pseudo-range error.

Only four classification results may lead to pseudo-range
errors with large differences corresponding to the same weight
for GNSS SPP. Therefore, the output scores of the machine
learning model are employed for more refined weighting. The
weight of the pseudo-range can be obtained by multiplying
the median of the error range represented for each category
and the output score. Assuming the model output scores are
S = [S1 S2 S3 S4], the pseudo-range weight P for GNSS SPP
is given by

P =
1

S1 · 2 + S2 · 7 + S3 · 25 + S4 · 60
. (18)

The above weighting scheme can avoid the unreasonable
weights caused by not discrete enough classification, espe-
cially for pseudo-ranges at the boundary of two classes.
It can compensate for the losses caused by misclassification
simultaneously.

TABLE II
VEHICLE TESTING RAW DATASETS

TABLE III
SENSOR PARAMETERS OF LEADER PPOI-A15

TABLE IV
SENSOR PARAMETERS OF ADIS16465

V. FIELD TEST AND RESULTS ANALYSIS

A. Experiment Setup
To ensure the accuracy and generalization of the model,

we collected nine sets of raw data based on vehicle testing in
typical urban areas. Table II provides the location and duration
of each group of raw data. The total duration of the above
tests exceeds 10 h, including open sky, high-rise buildings,
forests, elevated roads, and tunnels. Groups 1–3 are typical
campus environments with buildings and trees. Groups 4–5
represent dense high-rise environments. Groups 6–7
are typical urban road environments, including elevated roads,
high-rise buildings, and tunnels. Groups 8–9 encompass both
mountainous and urban environments, including tree-lined
roads, tunnels, and high-rise buildings.

The vehicle tests were equipped with a ground reference
device and a collected device of datasets, which shared the
same GNSS antenna as shown in Fig. 4. The ground reference
device was a high-precision GNSS/INS-integrated navigation
system—Leador PPOI-A15, which is composed of a surveying
GNSS receiver and a ring laser gyro IMU. The corresponding
IMU parameters are given in Table III. The centimeter-level
positions can be provided by post-processing the data of
PPOI-A15, which meets the reference requirement.

The raw data collected device used a low-cost GNSS/INS-
integrated navigation system INS-Probe, which was inde-
pendently developed by ourselves. It has a GNSS receiver
module u-blox M8P and a MEMS inertial sensor ADIS16465.
The corresponding IMU parameters are given in Table IV.
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Fig. 4. Experimental equipment.

INS-Probe collects raw data such as GNSS C/N0, elevation,
pseudo-range, Doppler from GPS L1 and BDS B1 satellites,
and raw data from the inertial sensor. We used the GNSS
positioning software RTKLIB to calculate GNSS positioning
results. Our team’s open-source GNSS/INS-integrated naviga-
tion software KF-GINS was utilized to calculate the inertial
predicted position and the integrated navigation results.

B. Classification Results
The training and testing sets were generated by performing

feature extraction and labeling on the nine raw datasets.
Two sets were obtained from one raw dataset based on the
two pseudo-range residual estimating modes discussed above.
These sets were then employed to train or test the GNSS-BT
model and the INS-BT model, respectively. It should be noted
that open-field data accounts for a higher proportion com-
pared to other scenarios, and its proportion was appropriately
reduced in the data preprocessing stage. When a dataset was
selected for testing, the other 8 datasets were for model
training. Different datasets were selected as testing sets to
verify the model’s generalization ability.

This article adopts two indicators, prediction accuracy (ηAcc)
and jump class ratio (ηJC), to evaluate the model’s perfor-
mance. The accuracy represents the percentage of correctly
predicted instances in the test set, which reflects the overall
classification performance of the model. However, when the
test set has a severe class imbalance, the overall accuracy may
not accurately reflect the model’s performance. In such cases,
it is necessary to further compare the accuracy of each class.
So we use the ηAcc-all to represent the overall accuracy and
ηAcc-ec to represent the accuracy of each class.

The jump class ratio refers to the proportion of data where
the predicted class differs from the true class by two or more
levels. Assume Ni j represents the number of instances where
the actual error belongs to i th class and the model predicts
it as the j th class, and Ntotal represents the total number of
instances in the dataset. Since we only classify four categories,
i and j are maximized to 4. The expression of the jump class
ratio is

ηJC =
N13 + N14 + N24 + N31 + N41 + N42

NTotal
∗ 100%. (19)

The misclassification between adjacent categories causes a
relatively small deviation between the predicted category and

TABLE V
MODEL CLASSIFICATION PERFORMANCE

the truth, while a jump in classification results in a significantly
unreliable estimate. Therefore, a higher jump class ratio means
a higher probability of large deviations between the predicted
and true pseudo-range errors, unfavorable for the weight
allocation in GNSS positioning.

Three datasets (groups 1, 6, and 8) collected from differ-
ent typical environments were selected as test sets, and the
results are shown in Table V. While the jump class ratio
of GNSS-BT and INS-BT are less than 2.5%. It indicates
that both models have strong usability and will assign little
unreasonable weights to GNSS pseudo-ranges. In addition, the
ηJC of the INS-BT model is lower than that of the GNSS-BT
model. While the overall accuracy of the GNSS-BT model
is higher than 82% in the three scenarios, the accuracy of the
INS-BT model exceeds 87%. As mentioned before, the overall
accuracy cannot accurately reflect the model’s performance for
a testing dataset where one class of data has a significantly
higher proportion. For example, the overall accuracy of the two
models is similar in group 6 data. When comparing the accu-
racy of each class, it is found that GNSS-BT can only estimate
class 1 (small pseudo-range errors) accurately, the accuracy
of other classes is significantly worse than that of INS-BT.
This is because a significant proportion of the data in the
test set belongs to class 1. The results of the three scenarios
all show that INS-BT can get high overall accuracy and for
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Fig. 5. Overall test route.

each category accuracy simultaneously. The INS-BT model
predicts the pseudo-range errors more accurately, especially
for large pseudo-range errors that significantly negatively
impact positioning.

The above results demonstrate that both models accurately
predict pseudo-range errors and have strong generalization
abilities. INS-BT outperforms GNSS-BT in classifying large
pseudo-range errors, which is more valuable for improving the
positioning performance in challenged environments. Next, the
error-predicted results will be employed to assign weights to
pseudo-ranges for positioning, verifying the effectiveness of
the models.

C. Positioning Performance
Data from group 6 was collected in typical urban road

environments, including open areas, high-rise buildings, over-
passes, and tree-lined roads, and the test route is shown
in Fig. 5. The GNSS pseudo-range errors for this route are
shown in Fig. 6, which shows that there are many parts of the
test route where the GNSS observations deteriorate. To fully
validate the effectiveness of the proposed pseudo-range error
prediction method, the classification results were employed to
allocate weights to the pseudo-range observations in GNSS
positioning. Furthermore, the performance of GNSS/INS-
integrated navigation was tested based on the above GNSS
positioning. The performance of the model was evaluated
by comparing the positioning performance of the traditional,
GNSS-BT and INS-BT weighting methods. As the tradi-
tional weighting method, the weighting model of elevation
and signal-to-noise ratio from reference [50] was adopted.
The GNSS-BT based positioning employed the predicted
pseudo-range errors from the GNSS-BT to provide weights
to the weighted least-squares estimator in GNSS position-
ing. The INS-BT-based positioning assigned weights to the
pseudo-range observations in the positioning based on the
predicted pseudo-range errors from the INS-BT.

1) Vehicle Positioning Performance Analysis for Urban Envi-
ronments: Accuracy statistics of GNSS SPP with different
weighting methods are shown in Table VI. A comparison with
GNSS positioning with traditional weighting (Tra-Wei POS)
reveals that, both GNSS positioning with INS-BT weighting
(INS-BT POS) and that with GNSS-BT weighting (GNSS-BT
POS) significantly improve the positioning accuracy. GNSS-
BT and INS-BT improve the horizontal position accuracy

Fig. 6. Pseudo-range errors in test route.

TABLE VI
ACCURACY STATISTICS OF GNSS SPP WITH

DIFFERENT WEIGHTING METHODS

in the form of rms by 31.63% and 52.75%, respectively.
It indicates that machine learning models predict pseudo-range
errors more accurately, leading to more reasonable weights and
superior GNSS positioning accuracy. Meanwhile, the INS-BT
can improve the horizontal position accuracy in the form of
CEP95 by 52.81%, and in the form of STD by 70.32%,
respectively.

Compared with the GNSS-BT, the INS-BT shows supe-
rior horizontal positioning accuracy in terms of the CEP95.
Meanwhile, compared with GNSS-BT, the rms and STD of
INS-BT improved by 30.90% and 52.33%, respectively. The
improvement in GNSS positioning accuracy indicates that the
pseudo-range errors predicted by INS-BT are more accurate,
and can mitigate the negative impacts of large pseudo-range
errors on positioning. Therefore, the INS-BT can assess the
pseudo-range quality more accurately than GNSS-BT and
traditional methods. The improvement of GNSS positioning
accuracy demonstrates the advantage of INS-BT in estimating
the pseudo-range errors. However, compared to GNSS-BT,
INS-BT needs INS information, and it is unfair to evaluate
their effects on positioning via GNSS positioning. It is neces-
sary to compare the GNSS/INS-integrated positioning results,
which are obtained by fusing INS and above GNSS positioning
results, respectively.

The statistics of the GNSS/INS integration results are shown
in Table VII. The GNSS/INS-integrated navigation results
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TABLE VII
ACCURACY STATISTICS OF GNSS/INS INTEGRATION RESULTS

BASED ON DIFFERENT GNSS POSITIONING

Fig. 7. Challenged road map.

demonstrate that the performance of integrated positioning
based on INS-BT weighting (INS-BT IPOS) surpasses that
based on GNSS-BT weighting (GNSS-BT IPOS) and based on
traditional weighting (Tra-Wei IPOS). In terms of horizontal
direction, compared with the Tra-Wei IPOS, the INS-BT-
assisted integrated positioning accuracy in the form of CEP95
has an improvement of 37.85%, and the rms and STD also
improve by 36.15% and 55.93%, respectively. Compared with
the GNSS-BT IPOS, the horizontal positioning accuracy in the
form of CEP95, rms, and STD of the INS-BT IPOS improves
by 18.03%, 14.91%, and 28.15%, respectively. It indicates that
accurately estimating GNSS pseudo-range error can effectively
improve the accuracy of GNSS/INS-integrated navigation. The
more challenging the environments, the more important it is to
accurately estimate pseudo-range errors. Next, the positioning
performance of challenged scenarios will be analyzed.

2) GNSS/INS Positioning Performance of Challenged
Scenarios: The challenged roads in the Group6 test is shown
in Fig. 7, where the elevated road (Part1) and high-rise
building road (Part2) are highlighted in circles.

The GNSS/INS-integrated positioning error in the horizontal
direction is shown in Fig. 8. With the assistance of INS-BT,
the positioning error (CEP95) is reduced from 21.23 to 5.02 m,
which shows an accuracy improvement of 76.35%. Compared
with the GNSS-BT method, the accuracy also improves by
52.24% in the form of CEP95. This indicates that INS-BT
can significantly improve the integrated positioning accuracy

Fig. 8. Horizontal-integrated positioning error.

Fig. 9. CDF curve of integrated positioning errors on challenged roads.

in challenged environments. Additionally, compared with the
traditional method, the rms of the positioning errors was
reduced by 72.27%, and the STD was reduced by 84.41%.
This demonstrates that INS-BT predicts large pseudo-range
errors more effectively. When the large pseudo-range errors are
estimated accurately, the corresponding pseudo-range obser-
vations can be assigned to reasonable weights, which helps
improve positioning accuracy.

The cumulative distribution function (cdf) curve of the
integrated positioning errors on the challenged roads is shown
in Fig. 9. The horizontal axis of the cdf figure represents
the positioning error in meters, and the vertical axis is the
probability of points with errors smaller than the corre-
sponding horizontal axis value. The cdf curve provides a
visual representation of the distribution of positioning errors.
The faster the value of the vertical axis reaches 1, the smaller
the overall error of the curve. As can be seen from the
figure, the INS-BT IPOS curve has the largest value on the
vertical axis at the same value of error on the horizontal
axis, indicating that its error is concentrated in a smaller
range. With INS-BT, 94.89% of horizontal positioning errors
are within 5 m. Comparatively, with GNSS-BT assistance,
the proportion is 81.35%, and with the traditional method,
only 62.56% is below 5 m. While only 79.55% errors of the
traditional method are within 10 m, the overall horizontal posi-
tioning errors of the INS-BT aided method are less than 10 m.
The improvement in positioning accuracy with INS-BT can be
visualized very well through the cdf curve.
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Fig. 10. GNSS/INS positioning results of typical scenarios.

Fig. 11. Horizontal-integrated positioning errors curves on challenged
roads.

The GNSS/INS positioning results of typical scenarios
for Tra-Wei IPOS, GNSS-BT IPOS, and INS-BT IPOS are
depicted in Fig. 10. The horizontal positioning error curve
is shown in Fig. 11. The two parts with large positioning
errors indicated in the figure correspond to the typical cases
mentioned in Fig. 7. Fig. 6 shows that the pseudo-range errors
are relatively large in these typical scenarios. Part 1 is an
elevated road, and the live scenario is shown on the left of
Fig. 10. Its left side is the viaduct, and high-rise buildings
block the right side. There are a lot of NLOS satellites, result-
ing in large positioning errors for the traditional method. With
INS-BT assistance, the positioning errors are kept small.
While the positioning trajectories of the other two methods
have already exhibited significant deviations compared to the
reference trajectory, the positioning with INS-BT is almost
unaffected. Part 2 corresponds to a scenario where both
sides are obstructed by high-rise buildings. The positioning
trajectory is shown on the right of Fig. 10. The trajectory
of positioning with INS-BT assistance also has the best
consistency with the reference trajectory. The above results
of challenged roads demonstrate that INS-BT can accurately
predict pseudo-range errors, and provide more reasonable
weighting to improve positioning performance.

VI. CONCLUSION

This article proposes an INS-assisted GNSS pseudo-range
error prediction method based on machine learning. It is
intended to address the problem of inaccurate estimation of
GNSS pseudo-range errors, which seriously affect the avail-
ability of GNSS in urban challenged environments. It utilizes
pseudo-range residual estimated by INS as an important input
feature, together with GNSS C/N0, satellite elevation, and
pseudo-range rate consistency. A bagging decision tree learn-
ing method is employed to train the model. By evaluating
the model with multiple sets of typical urban vehicle data,
the tests demonstrate that the model achieves a high accu-
racy rate of over 87.00% in predicting pseudo-range errors.
When applied to weight GNSS pseudo-range observations,
the model significantly improves the horizontal positioning
accuracy in the form of CEP95 by 52.81% compared to the
conventional weighting method. Meanwhile, the horizontal
error (CEP95) of the GNSS/INS-integrated navigation in deep
urban areas is reduced from 21.23 to 5.02 m. The proposed
GNSS pseudo-range error prediction method can significantly
improve the performance of GNSS pseudo-range error esti-
mation in urban vehicle environments. It is not only beneficial
for positioning accuracy in GNSS-challenged environments,
but also provides more accurate GNSS credibility information
for unmanned systems.
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